Uniform Distributions on
Integer Matrices



The Problem

= How many ways can | fill in a matrix with specified row and
column sums?




A Quick Example




Who Cares?

= Theoretical motivation:

= Computer scientists are interested in optimal algorithms for
enumeration — this is a test bed

= Practical applications:

= Anything that’s a network or might be made to look like one




The Social Network

= | have a bunch of friends and you have a bunch of friends
and our friends have a bunch of friends and so on

= This can be represented as a binary matrix




The Social Network

= Suppose we see some patterns (structures) in this matrix

= Question:

= Are the structures simply a result of the fact that some people
have more friends than others?

= Or is something else going on?




The Social Network

= Solution:

= Fix the row and column sums (how many friends people have)

= Sample uniformly from the matrices satisfying these sums

= See whether the structures of interest are likely to occur by
chance




Darwin’s Finches

= Biologists are also interested in these sorts of matrices

= Though no longer obviously network problems

= For example: Darwin observed some a number of species of
finches distributed across a series of islands




Darwin’s Finches

= Question:

= |s the distribution of finches explained by the fact that some
islands are bigger and can support more species than others and
some finches are more common than others?

= Or are competitive dynamics at work?




Darwin’s Finches

= Solution:

= Test by uniformly sampling with fixed number of species per
island (column sums) and fixed number of islands on which a
species is found (row sums)

= Can test how likely observed combinations of species are to
occur by chance




Computational Challenge

= A small example...

= How many 8x8 matrices with row & column sums = 8 do you
think are there?




Computational Challenge

= Answer:

= 1,046,591,482,728,408,076,517,376

= (a.k.a. 1 septillion plus)




Computational Challenge

= As many as that is, this is whittled down from more than
40764 possibilities

= Which is > 107100 or about 10 times the age of the universe

= Even though our algorithm doesn’t actually require us to sort
though all these possibilities, we do have to handle the fact
that many many (sub)problems lead to the same place

= ... parallel sort & removal of duplicates = lots of headaches



Strategies: Pros & Cons

= Level-by-level vs. depth first + hashing
= rank synchronization

= Storage: distributed vs. master-worker model

= Sorting:
= Merge sort
= Radix sort




Our Algorithm

= Serial algorithm
= multimaps, new maps, and more

= Class to hold “Problems”

= Not the most interesting from a parallel computing standpoint, but
several days of coding...




Our Algorithm

= Parallel step by step

= Rank 0 gets initial problem, calculates random matrix used in
load balancing for sort, and broadcasts

= For each row, each rank goes though:
= Step 0. Calculate new maps for my problems
= Step 1. Package the new problems

Step 2. Send and receive all the info (6 all to all calls)

Step 3a. Unpack the received data from all ranks

Step 3b. Merge sort & deduplicate problems received

Step 4. Convert to array which stores final answer (portion of DAG) for
this row

= Print final DAG & total solutions to file



Did we get the right answer?

= Multiple checks of the final answer ...
= Against small problems we could compute by hand
= Against serial code written by Jeff Miller in Python

= And lots of printouts & testing individual function performance

* Though note answers are floating point ... if we really wanted
correct down to the last decimal place would need some sort of
arbitrary precision implementation




Strong Scaling

9x9 matrix with sums=12

121

RN
N
o

log data per second
©

118




Weak Scaling(?)

9x9 matrix with sums=9 to 14

180
160
140
120 /——L
100

80
60

1 59
o
"
"
@
3
9
o2
= 0
@
2 @
n 0
=
©)
»
(o7




Future Directions

= Improve parallel sort
= Better randomization & load balancing

= Improve serial algorithm
= Can we do a better job of anticipating duplicates?

= Deal with really big numbers (arbitrary precision arithmetic)




