
Uniform Distributions on
Integer Matrices

The Problem
§ How many ways can I fill in a matrix with specified row and

column sums?

? ? ? 2

? ? ? 2

? ? ? 3

2 2 3

A Quick Example

0 2 0 2

1 0 1 2

1 0 2 3

2 2 3

? ? ? 2

? ? ? 2

? ? ? 3

2 2 3

Who Cares?
§ Theoretical motivation:

§ Computer scientists are interested in optimal algorithms for
enumeration – this is a test bed

§ Practical applications:

§  Anything that’s a network or might be made to look like one

The Social Network
§  I have a bunch of friends and you have a bunch of friends

and our friends have a bunch of friends and so on

§ This can be represented as a binary matrix

The Social Network
§ Suppose we see some patterns (structures) in this matrix

§ Question:
§  Are the structures simply a result of the fact that some people

have more friends than others?
§ Or is something else going on?

The Social Network
§ Solution:

§  Fix the row and column sums (how many friends people have)

§  Sample uniformly from the matrices satisfying these sums

§  See whether the structures of interest are likely to occur by
chance

Darwin’s Finches
§ Biologists are also interested in these sorts of matrices

§ Though no longer obviously network problems

§ For example: Darwin observed some a number of species of
finches distributed across a series of islands

Darwin’s Finches
§ Question:

§  Is the distribution of finches explained by the fact that some
islands are bigger and can support more species than others and
some finches are more common than others?

§ Or are competitive dynamics at work?

Darwin’s Finches
§ Solution:

§  Test by uniformly sampling with fixed number of species per
island (column sums) and fixed number of islands on which a
species is found (row sums)

§ Can test how likely observed combinations of species are to
occur by chance

Computational Challenge
§ A small example…

§ How many 8x8 matrices with row & column sums = 8 do you
think are there?

Computational Challenge
§ Answer:

§  1,046,591,482,728,408,076,517,376

§  (a.k.a. 1 septillion plus)

Computational Challenge
§ As many as that is, this is whittled down from more than

40^64 possibilities

§ Which is > 10^100 or about 10 times the age of the universe

§ Even though our algorithm doesn’t actually require us to sort
though all these possibilities, we do have to handle the fact
that many many (sub)problems lead to the same place
§ … parallel sort & removal of duplicates = lots of headaches

Strategies: Pros & Cons
§ Level-by-level vs. depth first + hashing

§  rank synchronization

§ Storage: distributed vs. master-worker model

§ Sorting:
§ Merge sort
§ Radix sort

§ Pre-computing coefficients?

Our Algorithm
§ Serial algorithm

§ multimaps, new maps, and more

§ Class to hold “Problems”

§ Not the most interesting from a parallel computing standpoint, but
several days of coding…

Our Algorithm
§ Parallel step by step

§ Rank 0 gets initial problem, calculates random matrix used in
load balancing for sort, and broadcasts

§  For each row, each rank goes though:
§  Step 0. Calculate new maps for my problems
§  Step 1. Package the new problems
§  Step 2. Send and receive all the info (6 all to all calls)
§  Step 3a. Unpack the received data from all ranks
§  Step 3b. Merge sort & deduplicate problems received
§  Step 4. Convert to array which stores final answer (portion of DAG) for

this row
§  Print final DAG & total solutions to file

Did we get the right answer?
§ Multiple checks of the final answer …

§  Against small problems we could compute by hand
§  Against serial code written by Jeff Miller in Python

§ And lots of printouts & testing individual function performance

* Though note answers are floating point … if we really wanted
correct down to the last decimal place would need some sort of
arbitrary precision implementation

Strong Scaling

118

119

120

121

0 1 2 3 4 5 6

lo
g

da
ta

 p
er

 s
ec

on
d

log processors

9x9 matrix with sums=12

Weak Scaling(?)

60
80

100
120
140
160
180

0 1 2 3 4 5 lo
g

so
ln

s
pe

r p
ro

ce
ss

or

se
co

nd

log processors

9x9 matrix with sums=9 to 14

Future Directions
§  Improve parallel sort

§  Better randomization & load balancing

§  Improve serial algorithm
§ Can we do a better job of anticipating duplicates?

§ Deal with really big numbers (arbitrary precision arithmetic)

§ Start using for real sampling problems!

